Progress Report and Update

Material Testing Fixture

January 31, 2013

Matt Garcia, Randy Jackson, Jeremy Mountain, Qian Tong, Hui Yao

College of Engineering, Forestry, and Natural Sciences Northern Arizona University

Overview

- 1. Problem Statement
- 2. Current Fixture
- 3. Previous Design
- 4. Proposed Fixture
- 5. Material Selection
- 6. Manufacturing
- 7. Analysis
- 8. Updated Timeline

2

Problem Statement

Need: The eccentric loading of the test specimens causes fatigue failure.

Goal: Design an improved material testing fixture.

Constraints:

- 1. Specimen size (3 x 3 x 20) mm
- 2. Exposed Length (12mm)
- 3. Grips cannot bite into specimen
- 4. Push rods and grips must be nonmagnetic
- Distance between magnets (10mm)
- 6. Magnetic Field (0.5 1.0 T)
- 7. Axial Alignment (50 μm)

Objectives:

Objectives	Basis for Measurement	Units
Axially Aligned	Distance from Perfect Alginment	μm
Tension Compression Testing	Repeated Testing	# of Tests
Damage Specimen	Cost of Specimen Time to Replace	\$\$ / Month
Inexpensive	Machining Cost Material Cost	\$\$

Current Fixture

Problem Fixture

- Two aluminum pushrods
- No securing device
- Poor axial alignment

Previous Design

Last Semester

- Did not allow for varying specimen sizes
- More pieces leads to less reliable alignment
- Some features meet requirements

Proposed Fixture

New Design

- Tension 18N
- Compression 60N
- Collet tip allows variation in specimen size
- Axial Alignment

Qian

6

Proposed Fixture – Cont.

- Collet Tip
- Tension / Compression
 Compatible
- Secures specimen uniformly
- Taper presses equally on all sides

Jeremy

Proposed Fixture – Cont.

- Reduced # of part (8 4) means better alignment
- Minimized overall length improves alignment (from 200mm to 100mm)
- Micrometer addition also allows lateral loading of the specimen

Jeremy

Proposed Fixture – Cont.

- Lower cut out to make room for the micrometer
- Set screws for securing micrometer
- Tightening slot for wrench
- Previous alignment feature

Jeremy

Q

Material Selection

Previous Design: Aluminum T-6061

New Design: Stainless Steel T-316 CR Greater yield strength

Amount: D = 40mm, L = 300mm

Cost: \$50 Source: <u>http://www.onlinemetals.com/</u>

Material Selection – Cont.

- Silicon Rubber Sleeve
- Prevents damage to specimen
- Accounts for variable specimen size

Hui

Material Selection – Cont.

- Set Screws
- M7 x 10mm
- Black Oxide Standard
- Readily available

Manufacturing

- Small scale causes difficult manufacturing
- Tolerances are critical

Figure 1: FDM

Prototype

 FDM – Fused Deposition Modeling

Final Product

 EDM – Electro Discharge Machining

Analysis

- Bending ----- Collet tip analysis
- Tension / Compression ----- Overall fixture
- Fatigue ----- Repetition of tightening and loosening on tip
- Screw ----- Thread stress and yield points

Conclusion

- 1. Problem Statement
- 2. Current Fixture
- 3. Previous Design
- 4. Proposed Fixture
- 5. Material Selection
- 6. Manufacturing
- 7. Analysis
- 8. Updated Timeline

Updated Timeline

	Task Name	Jan 13 T W
1	Regular Customer Input	
2	Progress Report Presentation	
3	Progress Report	
4	Meet with Dr. Tester	
5	Create Manufacturers Drawings	
6	Manufacturing	
7	Testing	
8	Midpoint Review Presentations	
9	Midpoint Review Report	
10	Hardware Review 1	
11	Testing and Modifications	
12	Hardware Review 2	
13	Walkthrough Presentation	
14	Final Report	
15	Poster	
16	Final Presentation	

16

References

http://www.davidbarnescompany.com/

http://www.solidworks.com/

http://www.engineershandbook.com/Tables/frictioncoefficients.htm

http://www.engineersedge.com

http://www.alibaba.com

http://www.tcdcinc.com

http://www.engineeringtoolbox.com/friction-coefficients-d_778.html

http://www.youtube.com/watch?v=sPwURRG9_Gs

<u>http://nau.edu/Research/Feature-Stories/NAU-on-Leading-Edge-of-</u> <u>Smart-Materials-Research/</u>

Shigley's Mechanical Engineering Design, 9th Edition.

Dr. Constantin Ciocanel